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Abstract

In this thesis, we use convolutional long short-term memory based neural network archi-
tectures to predict certain basic dynamics of weather variables. First, rainfall dynamics
are studied across direct and iterative forecasting methodologies from India-restricted
data set. Next, we develop models capable of predicting dynamics over a cube-sphere
grid and as a proof of concept study the dynamics of geopotential height while com-
paring them on a benchmark dataset namely WeatherBench. Experiments indicate that
LeakyReLU activation function helps in convergence performance far better than hy-
perbolic tangent and sigmoid activation functions and ConvLSTM2D-based models are
advantageous for iterative forecasting than direct forecasting against conv2D-based mod-
els, whereas conv2D being a lighter architecture provide much quicker results with better
performance for direct forecasting.
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Chapter 1

Introduction

Neural Networks are a subclass of machine learning methods that have recently gained
much popularity as they specialize in high dimensional pattern recognition given enough
supervised data to learn on which are otherwise hard to algorithmically model in a step-
wise interpretive fashion. They are mostly used in image (spatial) and natural language
(temporal) pattern recognition by the use of convolution neural networks (CNN) and
recurrent neural networks (RNN) respectively (LeCun et al. (2015)). Weather predic-
tion being a high-dimensional regression problem with an inherent spatial and temporal
structure therefore poses an interesting question of applicability of convolutional-recurrent
neural networks (CRNN).

1.1 Problem Statement

Weather forecasting is a prediction problem of the conditions of the atmosphere given
past data over location and time. Naturally, this can be stated as a spatiotemporal se-
quence forecasting problem.

As a dynamical system, this can be represented as vectors of variables over a spatial
grid of M × N locations. On these locations, say, P variables are measured. Therefore
any observation at a given time is from the space RM×N×P , where R is the domain of the
observed variables. Given a certain periodicity of the past data, it can be represented
as a sequence of elements from this aforementioned space as X1, X2, X3, . . . , Xt. Then
the forecasting problem is defined as to predict the least error K−length sequence in the
future given the previous t observations (including the current one) as input. This can
be represented as

X̂t+1, · · · , X̂t+K = f(Xt+1, . . . , Xt+K | X1, X2, X3, . . . , Xt)

where f is the forecasting function. The function f here is a high-dimensional param-
eterized function based on artificial neural network architectures. In other words, our
problem reduces to finding a suitable architecture which reduces the error between the
predicted and the ground truth of observations.
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1.2 Previous Work

1.2.1 On Post-processing, Downscaling and Non-Forecasting Ap-
plications

Operational weather prediction uses physics-based NWP (Numerical Weather Prediction)
models which try to understand the underlying equation of sub-processes such as air flow,
cloud formation etc., in the atmosphere on a grid scale of 10 km. As of now, NNs have
been used either in post-processing, downscaling, or extreme event detection.

Post processing examples involve extracting information such as prediction uncertain-
ity in NWP weather forecasts as in Scher and Messori (2018). Other examples include
Chapman et al. (2019) and Davò et al. (2016).Rasp and Lerch (2018) used NNs for ensem-
ble probabilistic postprocessing of NWP. Downscaling refers to the problem to generating
high resolution images from low resolution images primarily for the purpose of providing
more granular data for local impact studies. There two broad forms, dynamic down-
scaling and statistical downscaling. Deep learning techniques such as Generative Adver-
sarial Networks (GANs) have been utilized for statistical downscaling. Rocha Rodrigues
et al. (2018) downscaled GCM (General Circulation Model) output.Whereas, Kurth et al.
(2018), Lagerquist et al. (2019) and Liu et al. (2016) have used NNs for extreme weather
detection.

Apart from Neural Networks, classical machine learning techniques have also been
used for geo-scientific classification and anomaly detection (Reichstein et al. (2019)).
But the classical methods of random forests, feed-forward trees etc. had to be hand de-
signed and could not be scaled to huge data with both spatial and temporal diversity.

Apart from these, a middle ground of ML-based weather prediction work includes the
improvement of physics parameterizations in GCM (Brenowitz and Bretherton (2018)
and Rasp et al. (2018)).

1.2.2 On Data-driven Neural Networks-based Forecasting
As opposed to the previous applications of neural networks, recently there has been some
work on addressing whether deep learning techniques can be used to generate purely
data-driven statistical forecasts which are not explicitly provided any constraints of at-
mospheric physics. In other words, this amounts to asking whether neural network models
can encode a representational learning of physical processes of the atmosphere.

In this regard, one of the first basic papers which discuss the fundamental design
choices for a global forecast model based on neural networks is Dueben and Bauer (2018).
They have used spatially localized networks similar to Convolutional Neural Networks
(CNNs) and Direct Neural Networks (also knows as fully connected neural networks) to
predict a single atmospheric variable, 500-hPa geopotential height trained on 7 years of
ERA 5 reanalysis data regridded at 6◦ spatial resolution. Using local stencils resulted
in much better results than DNNs though their predictions were just marginally better
than persistence at early forecast lead times. Next we see, Scher (2018) use the input
and output states of a highly simplified General Circulation Model (GCM) as supervised
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data to train a NN to directly emulate the dynamics of the GCM. It is to be noted
that although the results showed no long-term drift and beat baselines of climatology
and persistence significantly, they were devoid of any seasonal cycles (eternal Northern
Hemispheric winter), diurnal cycle or oceans. Similar model emulation study was done
by Vlachas et al. (2018) where, like the first section of Dueben and Bauer (2018), a neural
network was compared against a theoretical high-dimensional chaotic system using Long
short-term memory networks (LSTMs).

The next follow-up study by Scher and Messori (2019) on replicating GCM dynamics
with seasonal variation and higher horizontal resolution resulted in the CNN architectures
performing slightly worse and revealing a more complicated story though these are not
attributed to higher computational costs on a limited model but increasing complexity
of high-resolution weather being used.

Improving upon the first work of Dueben, Weyn et al. (2019) used a fully data-driven
neural network based model (WDC19) to forecast observed weather rather than the fore-
casts states of idealized GCM models. The data used was restricted to the northern
Hemisphere and the model was trained to predict 500-hPa geopotential heights and 700
to 300 hPa geopotential thickness from 24 years of atmospheric reanalysis (ERA 5) on
a 2.5◦ spatial resolution. This model did result in a comparison to forecast accuracy of
current operational NWP models, which have been refined by decades of research, op-
erate at much higher resolution, and use far more data to describe the initial condition
for each forecast. It significantly outperformed persistence and climatology benchmarks,
as well as a basic dynamical model such as barotropic vorticity model, which was the
type of model used in the earliest years of NWP. Their best CNN formulation was able
to outperform a climatological benchmark for root−mean−squared error (RMSE) in the
500−hPa height field out to about 5 days of forecast lead time. Note that the WDC19
model was restricted to the Northern Hemisphere on a latitude−longitude grid and it did
not have appropriate boundary conditions at the North Pole and the equator.

This was followed by an attempt to extend such an architecture to another global end-
to-end forecasting model in Weyn et al. (2020). The most important change being use of
a volume−conservative mapping to project global data from regular latitude−longitude
grids onto a cubed sphere and develop CNNs which operate on the cube faces using it-
erative sequence forecasting technique to feed the outputs of the model into itself and
improve long-term climate forecasts. Their best CNN forecast outperforms a climatology
benchmark at up to 120 hours of lead time, and appears to correctly asymptote towards
persistence forecasts at longer lead times up to 14 days.

The later part of this thesis work uses data from a benchmarking dataset called
WeatherBench, (Rasp et al. (2020)) which is made to provide a common ground to test
various models and compare with the existing models.

1.3 Outline of current work
In first part of this thesis, two variants of a convLSTM-based forecasting model are devel-
oped. They are a direct and an iterative forecasting model (see section 3.2 for difference
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in direct and iterative forecasting). The direct model is based on the architecture specifi-
cations followed by George (2020), a preceding master’s thesis work done in IITM, Pune.
The model was modified to suit iterative forecasting methodology and compared on the
same data set used and over the same specifications to identify any possible advantages
over either variant.

In the later part, a new implementation of an end-to-end deep neural network fore-
casting model was studied which develops upon existing ConvLSTM2D architecture.
We develop a CubeSphereConvLSTM2D architecture in order to input a cubed-sphere
format of global atmospheric data as inspired by Wyen et al. 2020. As the existing Con-
vLSTM2D keras class itself depends on ConvRNN, RNN and basic Layer class, we had to
spend significant amount of time in unpacking and building CubeSphereConvLSTM2D
from scratch. The data used for this model is also significantly complex and large in
size and therefore required prepossessing before being deployable for usage in this new
architecture.

Chapter 2 provides the necessary background material specific to this work. Chapter
3 contains a detailed review of past global end-to-end deep neural network-based models
and descriptions of the two data sets used in this work. Chapter 4 details the methods
developed in this work and the respective specifications of our model and workflow.
Lastly, Chapter 5 presents the performance and results and Chapter 6 discusses the
results and future work possible.
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Chapter 2

Neural Network Fundamentals

Artificial Intelligence is the use of machines to perform certain computational tasks. In
the age of Symbolic AI, it was restricted to solving problems whose solutions were figured
by humans and were then converted to machine readable code to automate its implemen-
tation. It was assumed for a long time that for a machine to do complex tasks, one would
have to explicitly hand-write a sufficiently large amount of rules that would determinis-
tically let the machine behave in a certain manner.

Soon, a different paradigm evolved where a program would be given data (say, a set
of supervised input and output) and encoded to update certain parameters that would
help it calculate a new output, given a new input. This was a fundamentally different use
of machines as previously, in Symbolic AI, no part of the original instructions updated
itself unless explicitly done by the programmer. Today, machine learning comprises of
computational algorithms that learn a particular set of representation of rules of the
problem when supplied with data and answers i.e. the algorithms learn rules from a
data-driven approach. A simple schematic representation of the difference between the
paradigms of computation is presented in figure 2.1. This section explains the types of
neural networks and the framework of the machine learning algorithms used in this work.
A basic categorization of machine learning models based on the ways an algorithm learns
a pattern are:

• supervised,
• unsupervised,
• semi-supervised, and
• reinforcement learning.

Our model is a supervised machine learning model and uses previously labeled atmo-
spheric data for training. The input space of supervised learning is of type (X, Y ). The
model aims to find a function f that best transforms via representational learning, X
to Y . The supervised learning takes place with the help of the Y as we keep updating
f using gradient-based back-propagation of a particular loss function L(Y, f(X)) using
suitable optimizers and metrics for evaluation.

More specifically, ours is a supervised deep machine learning model for non-linear
time series regression, where "deep" refers to the usage of multiple layers of neural net-
works. Deep learning models have recently become popular as they have been shown
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Figure 2.1: From artificial intelligence to deep learning. a. The programming paradigm
for symbolic AI. b. The programming paradigm for ML. c. The relationship among
artificial intelligence, machine learning, and deep learning. Image from Bian and Xie
(2020).

to be universal nonlinear function approximators Nielsen (2015) and also as advances in
computational efficiency has made it possible to train such large models. These models
are expected to learn meaningful representations of the high-dimensional input through
successive layers of transformations.

A general supervised deep learning workflow in shown in figure 2.2. This is the main
essence of a supervised deep learning algorithm which loops through the depicted process
under some conditional statement. The conditional can be as simple as a certain fixed
number of loops (in deep learning parlance, known as epochs) or a while loop until a
particular metric that we are interested in has stopped improving after a certain number
of epochs, such as the loss value or some scalar function that represents the same.

2.1 NN Layers
The basic building blocks of a neural network are layers which apply transformations to
the inputs of the layer into a higher or lower dimensional representation. Mathematically,
this can be represented as follows.

Definition 1 (Layer Transformation). Given an n−dimensional input matrix X ∈ Rj1×j2×···×jn

and a m−dimensional layer’s weight matrix w ∈ Rl1×l2×···×lm, a layer performs a well-
defined operation p : Rj1×j2×···×jn → Rk1×k2×···×ko , transforming X to an o−dimensional
output matrix Y .

The operation, p, can be a multi-step iterative function if the input matrix is a time-
series or a single step application of a sigmoid or ReLU activation function. Depending
upon the type of operation p, there can be various kinds of layers. Here we present
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Figure 2.2: Supervised deep-learning workflow. Figure taken from Chollet (2017).

Figure 2.3: Convolution operation of a 5 × 5 image with a 3 × 3 kernel resulting in a 3
× 3 output. Figure taken from Wicht (2018).

the ones that are used in our model. Usually, they are also accompanied by applying
a non-linear (called as an activation) function on the output matrix, Y , in an element-
wise fashion as a part of an existing layer or as a separate successive layer. Apart from
the weight matrices, a layer operation is also characterized by certain hyper-parameters
which are set during initialization. The weights are the parameters that the algorithm
learns, whereas the hyper-parameters are parameters that control the learning and are
not trained from the data. Certain set of consecutive layers are called blocks as grouped
by their functionality.

2.1.1 Convolutional Layer
As suggested, this layer performs a convolution operation on its inputs. Depending on
the dimensions of the input, a conv2D or a conv3D layer transformation may be used.
In its most basic step it takes a m × n input matrix and given a k × k kernel (weight)
matrix which will stride (move) over the input s times doing element-wise dot product

12



Figure 2.4: Padding input to preserve input matrix dimen-
sionality. By Narges Khatami - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=70625697 / GFDL.

and return a (m− k)/s+ 1× (n− k)/s+ 1 output matrix as shown in figure 2.3.

As it involves a reduction in the dimension of the input matrix, the input matrix is
usually padded with suitable amount of zeros (if s = 1, then a padding of bk/2c zeros
is required to preserve the dimensionality. Given the nature of the inputs, there can be
more ways to pad the inputs instead of just zeros, though it is a common practise in
computer vision to use zeros. In 4.3.2 we describe a natural padding possible for global
gridded meteorological data.

It should be noted here that the values of the kernel are themselves learnable param-
eters, whereas the number of filters, kernel size, k, stride length, s and the padding width
are hyper-parameters to be set while initializing the layer. Stride defaults to one and
padding defaults to none. Also, an input to a conv2D layer is a 4-dimensional matrix
of the form (samples, channels, height, width). As inherited from computer vision usage
each image is not defined as just a 2D matrix but a 3D matrix. This is to incorporate
the fact that images are usually a combination of RGB values and has three 2D matri-
ces for each channel that describes an image. Similarily, a conv3D layer is capable of
transforming a 5D input of the type (samples, channels, height, width, depth) where it
is be understood that a single input itself here is 3D object with as many as channels to
represent different characteristics of the input.

2.1.2 Recurrence Layer
Recurrence layers are used for transformation of sequential data. The simplest form of
input that a recurrence layer is a 2-dimensional matrix of the type (samples, features).
Recurrence layers are characterized by two components, a cell that performs transforma-
tions to a single time step of the input data and a function that repeats the process of the
transformation for each following time step while carrying forward certain information in
the form of weight matrices.

A schematic representation of a simple recurrence layer is shown in figure 2.5. The
cell in this representation is the same as single layer of a Dense Neural Network (also
knows as Direct NN/Linear NN)

In 1997, Long Short-Term Memory Cell was introduced by Hochreiter and Schmid-
huber (1997) . The two main advantages of LSTM over simple RNN were, firstly, the
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Figure 2.5: Schematic representation of a RNN layer. By fdeloche - Own work, CC
BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=60109157

addition of a memory matrix which was carried forward into all future time steps and
helped in learning local temporal patterns that effect in long-range effects. Secondly, to
counter the problem of vanishing or exploding gradient problem.

Following are the equations which represent the transformations to a single time step
into a LSTM cell. Given a d−length input and a LSTM initialized with h hidden units
where

• xt ∈ Rd as an input d−lenght vector (1-D matrix) to the LSTM

• ht ∈ Rh is the hidden state vector (also the output vector in LSTM and is initialized
with a zero vector of h−length if h0 is not provided)

• it ∈ Rh is input gate activation vector

• ft ∈ Rh is forget gate activation vector

• ot ∈ Rh is output gate activation vector

• c̃t ∈ Rh is memory cell input activation vector

• ct ∈ Rh memory cell state vector (zero vector of h−length if c0 is not provided)

• b ∈ Rh and w ∈ Rd×h/Rh×h depending on whether it is being multiplied to xt or ht
• σ : R→ R is the sigmoid activation function

• σh : R→ R is by default the hyperbolic activation function

• ◦ : R× R→ R is the Hadamard product (element-wise product binary operation)

it = σ(wixxt + wihht + bi)
ft = σ(wfxxt + wfhht + bf )
ot = σ(woxxt + wohht + bo)
c̃ = σh(wcxxt + wchht + bc)
ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ σh(ct)

(2.1)
Consequently an RNN can be customized to perform transformation on more complex

input matrices by using cells suitable for such inputs. We next present one such layer
architecture which takes 5-dimensional inputs of the type (samples, timesteps, channels,
height, width).
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2.1.3 Convolutional Recurrence Layer
This is the main class of layers that we are going to use in this model. As it suggests,
it is a layer which is capable of transforming input data which are a time series of im-
ages. It was first introduced by Shi et al. (2015) in the implementaion of ConvLSTM2D
layer. The basic equations governing the transformation of this layer are exactly like that
of a LSTM with matrix multiplication replaced with convolution operations in order to
extract spatial features. Following are the equations performed inside a single layer of
ConvLSTM2DCell class initialized with hyper-parameters that specify the convolution
kernels including k, kernel size, f , number of filters.

it = σ(wix ∗ xt + wih ∗ ht + bi)
ft = σ(wfx ∗ xt + wfh ∗ ht + bf )
ot = σ(wox ∗ xt + woh ∗ ht + bo)
c̃ = σh(wcxxt + wchht + bc)
ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ σh(ct)

(2.2)

The ∗ denotes the convolution operation here and all other variables mean the same
qualitatively but are of different dimensions as follows:

• x is a 5−dimensional input of the form (samples, timesteps, channels, height, width)
where xt is a single time step.

• ht and ct are similarily 4D matrices which are initialized as zero matices by default.

• All activation gates, memory cell candidates and bias terms are therefore elements
of Rj1×j3×j4×j5 where ji are the length of vectors for each dimension of the 5D input
vector and i ∈ {#samples,#channels,#height,#width}.

• w are convolution filters of size (k, k) for each input channel and each output
number of filters specified.

An important difference between the ConvLSTM2D implementation in current Tensor-
flow 2.4 library (Abadi et al. (2016)) and the equations described in the Shi et al. (2015)
is that the current ConvLSTM2D layer implementation does not have peephole connec-
tions. Peephole connections are additional terms to include explicit ct−1 dependence in
each gate and memory cell activation equations. With peephole connections the cell
transformations as described in Shi et al. (2015) are as follows:

it = σ(wix ∗ xt + wih ∗ ht + vi ◦ ct−1 + bi)
ft = σ(wfx ∗ xt + wfh ∗ ht + vf ◦ ct−1 + bf )
ot = σ(wox ∗ xt + woh ∗ ht + vo ◦ ct−1 + bo)
c̃ = σh(wcxxt + wchht + bc)
ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ σh(ct)

(2.3)
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While writing this thesis and to the best of the author’s knowledge there has been
no implementation of peephole ConvLSTM2D in Tensorflow. Though it would be an im-
pressive addition, but it also increases the number of parameters by a factor of two in the
already heavily parametrized class of ConvLSTM2D and there hasn’t been enough basic
research to prove if that will help with next-frame prediction in a substantial manner.
In fact as expanded upon future research direction (??), this can possible lead to better
results of ConvLSTMs than conv2D but needs to be rigorously compared with certain
normalizing parameters.

2.1.4 Activations
Activations are the layers that apply a non-linear transformation to the inputs. It is an
element-wise operation on the inputs and are fundamental to the ability of deep neural
networks to approximate non-linear functions. The most used activations functions are:

• Sigmoid: σ(x) = 1
1+e−x

• Hyperbolic Tangent: σh(x) = 2
1+e−2x − 1

• Rectified Linear Unit: σr(x) = max(0, x)

• Leaky ReLU: σlr(x) = max(x, αx) with default α = 0.3

Traditionally, sigmoid and hyperbolic tangent were the most prevalent activations used
in various neural networks. Recently, Rectified Linear Unit has been found to help
convergence of loss much faster than other two.

2.2 Loss Function
Loss function calculates the metric that will be minimized over training epochs. The
neural network model may contain high-dimensional predicted values and ground truth
matrices but loss is a scalar function over predictions and ground truth and if multiple
losses are provided as an array, default action is to average them unless an array of loss
weights are specified for each loss.

An important consideration while defining the loss metric is to consider what charac-
teristics are to minimized and whether the neural network may perform an unintended
optimization which was not explicitly mentioned to not be carried out. For example, two
main metrics are used to measure the performance of time series weather predictions,
RMSE and ACC (Anomaly Correlation Coefficient). If we let the model only increase
ACC (as the model by default reduces the scalar calculated by the loss function, we can
feed it l′ = 1− ACC), then it will reduce pattern correlation among the predictions and
ground truth but not account for large deviations of the magnitude of difference between
the predicted and ground truth. Therefore MSE or RMSE are chosen to be loss functions
in our model training which will surely drive the model to learn better transformation
than just correlation metrics. The choice of loss metric characterizes what we want the
model to minimise; in other words, it drives the model to learn a particular skill.
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2.3 Optimizers
Optimizers determine how a specific step of gradient-descent is to be carried out based on
the loss value from the loss function. All optimizers are variants of some kind of stochastic
gradient descent. It would be important to note here that as opposed to classical super-
vised machine learning where a certain minima of a loss function is calculated based on
all input data, gradient-descent based learning goes through several loops over the input
data to learn the trainable parameters. In the quotation below from LeCun et al. (2015)
is the essence of gradient-based learning that powers NNs towards optimization.

2.4 Metrics
Apart from loss, we can look for certain other evaluation metrics to be calculated to check
if the model is improving in an intended way or not improving in an unindented way at
the end of each epoch such as accuracy, mean absolute error and RMSE/MSE, Pearson
Correlation Coeeficient, ACC etc.
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Chapter 3

Review of Models and Data

3.1 Operational Physics-based Models
Weather forecasting methods that are currently used include numerical weather predic-
tion (NWP) models based on General Circulation Models (GCMs). These are a complex
set of equations describing the physics of atmospheric state dynamics. These consist of
partial differential equations that are solved numerically subject to thermodynamic and
the existing physical parametrization of known atmospheric processes.

Over time the predictions using NWP models have become better (Bauer et al. (2015))
and all operational forecasts are done using these methods. However, analytical solutions
do not exist for fluid dynamical models on spherical domains especially for Navier-Stokes
equations and additional complexities arise at the pole as a point of singularity.

Precipitation being another difficult to predict variable has a slew of other methods
such as nowcasting extrapolation methods such as COTREC. Although the extrapola-
tion methods are effective for reliably predicting radar echo, they lack a strong nonlinear
mapping ability to extract inherent features from large amounts of data Chen et al. (2020).

3.2 Neural Network-based Models
The problem statement of weather forecasting which requires some previous knowledge of
atmospheric state to predict the next n days/hours in future (in forecasting/nowcasting
respectively) allows for being amenable to a supervised machine learning. Although a
brute force application of regression using machine learning was considered to be of not
much help, the recent development in computer vision techniques to extract spatial pat-
terns using CNNs and the success of Natural Language Processing using RNNs have
opened up possibility of considering this approach again.

It is only recently that they has been research in trying to emulate GCMs or produce
end-to-end trainable models for purely data-driven predictions using machine learning,
specifically neural networks, for such problems. There are three broad classification of
models based on the method of prediction: direct, iterative and continuous.
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1. Direct: For each successive forecast time step (be it hourly/daily) a separate model
is trained. Therefore the in supervised training samples (X, Y ), Y is changed ac-
cordingly for different time step forecasting model.

2. Iterative: The model is fundamentally different from direct models in the way that
it represents take t previous time steps, and predict n future time steps and can be
used iteratively to predict 2n, 3n and even more forecast lead times. Naturally such
models are more difficult to train and show lesser skill compared to direct models.

3. Continuous: This type of model takes time as an additional input and a single
model is used to generate all forecast lead times. (Sønderby et al. (2020) and Rasp
and Thuerey (2021))

3.3 Comparison of Previous Work
Following are the 5 major previous works on modeling end-to-end data-driven forecasting
of large-scale atmospheric dynamics in medium range (5 lead days extending up-to next
2 weeks) using neural networks. They have been compared extensively along various
parameters from the source and type of data used to the minute implementation details.
Emphasis has been given on the methodology of sequence prediction, architecture used,
and metrics that they considered. The relevant observation are compiled in section 3.4

3.3.1 Dueben and Bauer (2018)
• Aim: To create a toy weather model for global medium range forecasts
• Data Variables: 500-hPa geopotential height (Z500) only and some models with

2-meter temperature alongside Z500. Additionally two time fields were added as an
input variable to represent daily cycle (growing linearly from midnight to midnight
of the following day) and yearly cycle (with correct representation of leap years)

• Data Frequency: Hourly
• Data Resolution: 6◦ latitude-longitude grid with 31× 60 points.
• Data Normalization: Max-Min normalization, scaled to −1 and +1.
• I/O Sequence: Input consisted of one hour of regridded geopotential (Z500) into

60 × 30 resolution and output consisted of the incremental difference between the
next hour’s Z500.

• Train/Validation Set: 67,200 total hours in the period between 1 January 2010 and
31 August 2017. First 7 years were used for training, with 20% split for validation.

• Test Set: 10 forecasts distributed between March 2017 and February 2018.
• Models: Two iterative variants - Fully connected neural networks and convolution-

filter like local networks.
• Architectures: First one had a Sequential of 4 layers of DNN with 1862 units each

(1862 being chosen as it was their input layer width). The local network contained
a N ×N stencil layer followed by 4 layers of DNN.

• Loss: Mean Absolute Error
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• Optimizer: Stochastic Gradient Descent
• Activation: Hyperbolic Tangent 2.1.4
• Epochs: 200 (fixed)
• Evaluation Metrics: Mean Absolute Error
• Results: Persistence-level performance not better than physical baselines
• Note: Instead of predicting the next hour’s Z500, they train the network to predict

the difference between the next hour and current hour, which can be seen to be
directly motivated as being the right hand-side of differential equations if the time
step is one hour. Therefore they use a third-order Adams–Bashforth explicit time-
stepping scheme for produce iterative forecasts.

3.3.2 Scher (2018)

Figure 3.1: Regenerated
model used in Scher (2018).

This is
• Aim: To train a network to emulate a simplified GCM

model (PUMA) by feeding it supervised form of its
inputs and outputs.

• Data Variables: 4 variables consisting of horizon-
tal and meridional wind, temperature, and 500−hPa
geopotential height interpolated for 10 pressure level
from 10 model levels and converted to daily frequency
from 45 min time steps. Results tested on 500−hPa
geopotential height.

• Data Frequency: Daily
• Data Resolution: 32× 64
• Data Normalization: All data was normalized to

mean 0 and standard deviation of 1 right from the
input layer and though all subsequent layers.

• I/O Sequence: Input consisted of daily atmospheric
state input as fed into the PUMA model.

• Train/Validation Set: 100 years of training data, 20
years for validation set

• Test Set: 30 years
• Models: Convolutional encoder-decoder with sepa-

rate networks for each day up-to 14 days (direct mod-
els).

• Architectures: Sequential layers consisting of an en-
coder block, reshaping layer and a decoder block as
shown in 3.1. Both encoding and decoding block
are similar and have 2 Conv2D layers with hyper-
parameters of 32 filters and (6 × 6) kernel size. En-
coder has a MaxPooling layer with pool size of 2 and decoder therefore has a
UpSampling layer of size 2 to ensure that the output dimensions match the input
dimensions. The reshaping layer is a Dense layer with 500 units.
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• Loss: Mean Squared Error
• Optimizer: Adam with 0.0001 learning rate (Kingma

and Ba (2014))
• Activation: Rectified Linear Unit 2.1.4
• Epochs: 10 (minimum) with EarlyStopping with the

following parameters:

– Metric Monitored: Validation Loss
– MinDelta: 0 (meaning )
– Patience: 5 epochs

• Evaluation Metrics: RMSE, normal correlation and
ACC

• Results: Long-term stable results with high skill
• Note: This model nicely emulated the a highly ideal-

ized GCM Model devoid of seasonal variability (eter-
nal Northern Hemispheric winter) and therefore points
to possible expansion to more complex external forc-
ing such as diurnal and seasonal cycle.

3.3.3 Scher and Messori (2019)
This paper was a much more complicated study building upon the previous work. A
total of 7 models were trained to compare against each other with varying degrees of
complexity in both spatial resolution and physical

• Aim: To emulate PLASIM (intermediate-complexity GCM) and PUMA (simplified
GCM) Model

• Data Variables:

– PUMA Model: 4 variables (u, v, t, z) as used in the full state used in Scher
(2018)

– PLASIM Model: 7 variables consisting of 4 variables of PUMA model and
3 additional fields related to the hydrological cycle (relative humidity, cloud
liquid water content and cloud cover). Though for comparison of these two
models, the additional fields have not been used, a test result was presented
in the paper including the additional fields.

• Data Frequency: Hourly
• Data Resolution: Two different models for each PLASIM and PUMA were trained

with resolution of T21 (32× 64) and T42 (64× 128) grids.
• Data Normalization: Standardization to zero mean and standard deviation of 1.
• I/O Sequence: Input consisted of daily atmospheric state input as fed into the

PLASIM and PUMA models.
• Train/Validation Set: Training consisted of upto 800 years. The last 10% samples

of the training data are used for validation.
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• Test Set: First 30 years were used as test set which were not used in training or
validation.

• Models: Iterative and direct models using purely convolutional layers.

• Architectures: Same as Scher (2018)

• Loss: Mean Squared Error

• Optimizer: Adam with 0.0001 learning rate.

• Activation: Rectified Linear Unit 2.1.4

• Epochs: Limited by maximum number of epochs at 100 and otherwise determined
by EarlyStopping with the following parameters:

– Metric Monitored: Validation Loss
– MinDelta: 0
– Patience: 5 epochs

• Evaluation Metrics: RMSE and ACC

• Results: Good skill for short lead times but unstable predictions on long time scales
(climate runs)

• Note: Even though the complexity of the GCM was increased the same architecture
as in Scher (2018) proved to able to handle these dynamics in the short range.

3.3.4 Weyn et al. (2019)
• Aim: To build a end-to-end NN-based forecasting model to predict two atmospheric

variables on restricted Northern Hemisphere grid from reanalysis data as opposed
to GCm emulations done before.

• Data Variables: Z500 and geopotential 700-300 hPa thickness

• Data Frequency: 6-hourly

• Data Resolution: 2.5◦ horizontal resolution cropped to Northern Hemisphere.

• Data Normalization: Standardization as before by subtracting Northern Hemi-
sphere climatological mean, followed by division of mean climatological standard
deviation.

• I/O Sequence: 2 input time steps separated by 6-hours, and 2 output time steps
separated by 6-hours.

• Train/Validation Split: 1979–2002 for model training (24 years) and 2003–2006 for
model validation (4 years).

• Test Set: 2007–2010 were set aside for the test set and used in final model perfor-
mance evaluation.

• Models: Iterative convolutional encoder-decoder type with 2 additional variants
using LSTM-based layers.
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Figure 3.2: Model architecture used in Scher and Messori (2019)

• Architectures: Similar to Scher (2018) with additional 2 convolutional layers with
zero padding to conserve dimensions of input and output. Some variants had one
first layer of ConvLSTM2D and some variants last layer of custom versions of Lo-
callyConnected2D layer class for latitudinally dependent output layer convolutional
filters.

• Loss: Mean Squared Error
• Optimizer: Adam with 0.001 learning rate.
• Activation: Hyperbolic Tangent Function 2.1.4
• Epochs: Minimum of 200 epochs conditioned on early stopping with parameters as

follows:

– Metric Monitored: Validation Loss
– MinDelta: 0
– Patience: 50 epochs
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• Evaluation Metrics: RMSE and ACC
• Results: One of their variants (τ−LSTM) outperforms a climatology benchmark at

up to 120 hours of lead time, and appears to correctly asymptote towards persistence
forecasts at longer lead times up to 14 days.

• Note: It is assumed that the climatological shifts in geopotential heights are in-
significant enough to consider the data to be from the same distribution.

3.3.5 Weyn et al. (2020)
• Aim: To extend the previous model upto several variables and global-scale forecasts

by converting regular latitude-longitude data into cubed-sphere format and identify
characteristics for long-term stable climate-like simulations.

• Data Variables: 4 variables consisting of Z500, Z1000, geopotential thickness as
before of 700− 300 and 2-meter temperature.

• Data Frequency: 3-hourly
• Data Resolution: Global 2◦ regular lat-lon data converted to cubed sphere with

each face of resolution 48 × 48.
• Data Normalization: Standardization as before.
• I/O Sequence: 2 input time steps separated by 6 hours, and total of 4 output time

steps separated by 6 hours with the last two being the iterated output of the first
two outputs.

• Train/Validation Set: Data from 1979 to 2012 was used for training, and 2013-2016
was set for validation.

• Test Set: 2017-2018
• Model: Iterative forecasting as well as iteratively trained purely-CNN based model.
• Architecture: 11 layers of custom neural network layer class called CubeSphere-

Conv2D with filter sizes in increasing and decreasing and fixed kernel size of (3 ×
3)

• Loss: Mean Squared Error
• Optimizer: Adam with 0.001 learning rate.
• Activation: Custom Leaky Rectified Linear Unit which is said to help in asymptotic

predictions over long time scales
• Epochs: Minimum of 100 epochs conditioned on early stopping with parameters as

follows:

– Metric Monitored: Validation Loss
– MinDelta: 0
– Patience: 50 epochs

• Evaluation Metrics: RMSE and ACC
• Results: Pretty good.
• Note: As in Weyn et al. (2019) climatological shifts are considered insignificant to

current predictions.
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3.3.6 Rasp and Thuerey (2021)
• Aim: To develop a Data-Driven Medium-Range Weather Prediction With a ResNet

architecture pre-trained on climate simulations of CMIP Data.

• Data Variables:

1. Inputs: Geopotential, temperature, zonal and meridional wind and specific
humidity at seven vertical levels (50, 250, 500, 600, 700, 850, and 925 hPa), 2-m
temperature, 6-h accumulated precipitation, the top-of-atmosphere incoming
solar radiation and three constant fields: the land-sea mask, orography and
the latitude at each grid point

2. Outputs: 500 hPa geopotential (Z500), 850 hPa temperature (T850), 2-m
temperature (T2M) and 6-hourly accumulated precipitation (PR)

• Data Frequency: Hourly

• Data Resolution: 5.625◦ of regular lat-lon grid with 32 × 64.

• Data Normalization: All fields were normalized by subtracting the mean and di-
viding by the standard deviation, with the exception of precipitation for which
the mean was not subtracted to keep the lower bound at zero. Additionally, we
log-transform of the precipitation to make the distribution less skewed.

• I/O Sequence: 3 time steps of input variables consisting of 114 channels separated
by 6 hours. Output consisted of one time step each for each direct model trained.

• Train/Validation Set: 1979 to 2015 was used for training, 2016 for validation.

• Test Set: 2017-2018

• Models: Fully convolutional ResNet

• Architecture: 19 Residual blocks, each containing conv2D, LeakyReLU, Batch nor-
malization and Dropout (0.1). Each conv2D layer has 128 filters with kernel size of
3, except the first one which has 7. Weight decay of 1× 10−5 is used in layers.

• Loss: Latitude-weighted mean squared error

• Activations: Leaky ReLU with default alpha of 0.3

• Optimizer: Adam with initial learning rate of 10−5 and it was decreased twice by
a factor of five when the validation loss has not decreased for two epochs. (using
ReduceLROnPlateau)

• Epochs: Conditioned on early stopping with parameters as follows:

– Metric Monitored: Validation Loss
– MinDelta: 0
– Patience: 5 epochs

• Evaluation Metrics: RMSE and ACC

25



• Results: Best.

• Note: As in Weyn et al. (2019) climatological shifts are considered insignificant to
current predictions.

3.4 Relevant Observations
Given these are studies, let us observe the development of techniques and questions
explored in them. We notice a few key things from the previous studies:

• Most studies have used Z500 as a standard forecasting variable as it does not depend
on near-surface condition as opposed to 2-meter temperature or surface pressure and
it also does not feature strong local gradients as present in humidity or precipitation
fields.

• Most models have used purely convolution architectures such as multiple layers of
Conv2D as their basic neural network layer where various time steps are concate-
nated in the channel axis. If more than one variable or pressure level is used they
are also concatenated in channel axis.

• Padding was first used in preserving dimension in Weyn et al. (2019) in the form
of zero padding. Later we see more natural extension of padding to cubed-sphere
padding in Weyn et al. (2020).

• Choice of loss functions have changed from mean absolute error to latitude weighted
mean squared error. MAE was easily applicable for a positive only field such as
geopotential height in a single variable model in Dueben and Bauer (2018), whereas
lat-weighted mean squared error makes most sense in evaluating output of models
which are trained on data projected on regular lat-lon grid to account for more
distorted polar points.

• Activation functions preferences have moved from sigmoid to hyperbolic tangent to
ReLU to LeakyReLU. This

• Early Stopping using validation loss as a metric for model performance is used in
all later models.

• ERA 5 Reanalysis Dataset has been used for all end-to-end NN-based weather
forecasting.

3.5 Conv2D architectures
The Conv2D layer is the basic architectural layer used in all the deep learning based
forecasting methods we have seen till now. This is primarily motivated by its ability to
capture spatial features. Here, we explain how the inputs are transformed in a given
conv2D layer. As visible in the figure 3.3, for each filter convolution operation is per-
formed with each image presented in the channel axis with a different kernel. Therefore
each image concatenated in the channel axis is treated independently and transformed ac-
cording to the convolution kernel learnt using back-propagation. Most convolution layers
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Figure 3.3: Multiple filters. Image used with permission from

are followed by an activation either just after it or through in-layer integration by sup-
plying an activation attribute and the schematic representation for the same is as follows:

3.6 ConvLSTM2D architectures
This layer is a convolutional-recurrent layer which performs the convolution operation
not just on multiple channels but successively on different time steps. This is the main
layer type used in our models. As explained in section 2.1.3 one of the main operations of
the layer carries out the exact operation as inside a conv2D layer but instead of treating
each time step as a separate channel it repeats the same convolution filter for all time
steps of a given channel.

3.7 Data
Two datasets have been used for this work, namely the IMD Dataset and the Weath-
erBench Dataset. The first one being a regridded format of data from ground stations
across India while the second one is satellite observation processed through current re-
analysis atmospheric models to capture the best possible state of atmosphere. In this
chapter, we first explain the general restructuring required to convert the daily/hourly
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Figure 3.4: Image from Rahman and Adjeroh (2019)

data available for a local/global region into supervised training form.

Apart from satellite observations, weather forecasting models also use data from a slew
of other sources such as radar echo, ground-based interpolation methods, etc.

3.7.1 Supervised Restructuring
Depending on the architecture of the model separate restructuring is required for different
models. For example, the models can be of the type:

1. Given the last 5 days of precipitation fields, predict the output for the next 5 days
(in meteorological parlance, lead time of 5 consecutive days)

2. Given 500−hPa geopotential height over the last 2 hours, predict it’s variation in
the next hour.

In order to prepare a supervised input data of the required type, the available data has
to be converted into a different shape. This involves restructuring the data which usually
leads to an increase in the size of the actual input data as multiple copies of the data exist
in the restructured supervised format. This increases the amount of data to be loaded
in the RAM by the number input and output time steps required by the model. For the
IMD Dataset this is not a major limitation of the RAM usage but, for the WeatherBench
Dataset it quickly becomes a bottleneck.

This is an usual problem in training deep neural networks with huge datasets and given
in our case where we have a single data file to restructure from, we can load the input
file once as use a DataGenerator class to feed restructured data on-the-fly to the model
for training and evaluating. For the specific case of our project a custom DataGenerator
class was implemented, the details of which are in section 4.2.1.

3.7.2 IMD Dataset
The Indian Meteorological Department (IMD) Dataset used here is from Pai et al. (2014),
which is a regridded re-assimilated format of observations from IMD ground stations
across the country. The IMD dataset is from 1 Jan 1975 to 31st Dec 2004. The frequency
of the data is daily with each observation from various scattered stations over India into
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a regular latitude-longitude of resolution 128 × 135. Given the period, there are 10,950
samples and therefore the raw nature of the data is available as a 3D array of type (days,
lat, lon). The size of the dataset is not exceeding one gigabyte.

3.7.3 WeatherBench Dataset
Reanalysis data are the state of an atmospheric model with a continuous assimilation of
observations to generate the best possible picture of the global atmosphere at a given
time. One of the biggest advantage of reanalysis dataset over ground-based interpolation
for training is that data is available for each grid point at each time step and that the
data is consistent over the entire data window. Whereas due to difference in equipment
and other human factors, IMD Dataset can have much more variance and noise which
may not be structurally distinguishable.

Regular Latitude-Longitude Format

The WeatherBench data as provided is a regridded format of the 0.25◦ spatial resolution
ERA5 data as available from CDS into 1.4625, 2.8 and 5.625 degrees. It is in a regular
latitude-longitude format.

Cubed Sphere Remap Format

As used in Weyn et al. (2020), a volume-conservative cubed-sphere mapping is used to
convert the regular lat-lon data. The transformation is parametrized by the choice of the
resolution of each cube face which is the number of points in each length of each face of
the resulting cubed sphere. One way to decide what resolution to map to is to conserve
the total number of grid points in both formats and pick the closest integer value of the
parameter that accomplishes this. For the case of converting 5.625◦ spatial resolution
(i.e. a lat-lon grid of 32× 64 points), we used a resolution value of (16× 16) for each of
the six faces whereas the closest integer to equal number of grid points is 18. This was
because GPU computation are also optimized for inputs and batch sizes of computations
which are powers of 2.

One could also try to maintain the equatorial spacing to be equal to the regular lat-lon
spacing. Calculating this way, the total number of points in the longitudinal direction
(64, in our case) would be divided by 4 equatorial faces and hence lead to easier integer
choice of cubed sphere resolution. Simple mathematical calculation will show that both
these methods will give numbers close to each other. Maintaining equal spacing will lead
to slightly fewer total grid points but not low enough to loose spatial complexity.
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Chapter 4

Methods

One of the main aim of this project was also the development of custom neural network
classes by building on existing architectures. While moving from the IMD Dataset to
working on the WeatherBench Dataset, certain classes and functions needed to be con-
structed for preprocessing and optimization. Even in the WeatherBench dataset, separate
focus had to be given in developing classes and functions for both regular lat-lon format
and cubed sphere remapped format of data. The WeatherBench repository does comes
with certain helper functions but they are constrained for usage on regular lat-lon data
format with simple single time step input-output models, therefore we develop more flexi-
ble tools for varied dataset formats and model topologies. All implementation are carried
out using open source deep learning libraries such as Keras (Chollet et al. (2015)) with
Tensorflow (Abadi et al. (2015)) backend and open source xarray (Hoyer and Hamman
(2017)) for managing netCDF data pipelines. A detailed discussion of their working can
be found in the github documentation. Here we list the most important ones and a
summary of their implementation.

4.1 Model Specifications
We have used two basic architectural variants. ConvLSTM2D and CubeSphereCon-
vLSTM2D. With the first architecture, ConvLSTM2D we compare across two different
forecasting variants, direct and iterative, on IMD Rainfall Data, while with the more-
complicated second variant we do a proof of concept supervised geopotential prediction.
Following are the specifications of the models used in our work.

4.1.1 ConvLSTM-based Model
• Data Variables: IMD Precipitation value in mm. (single variable input-output)
• Data Frequency: Daily
• Data Resolution: 0.25◦ spatial resolution restricted the the political boundary of

India with nan values outside filling a 128× 135 grid.
• Data Normalization: As carried in George (2020). Divided by max observed rainfall

to transform data from (0,max)→ (0, 1). Followed by exponentiation to transform
data from (0, 1) → (1, eαmax). Prescribing zero value to nan value points outside
India in the lat-lon grid. α was chosen to make sure eαmax was close to max.
Therefore finally the range is {0} ∪ (1, eαmax).
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Figure 4.1: IMD Input Data ranging from 3.5 mm daily max rainfall to 350 mm daily
max rainfall.

• I/O Sequence: 5 input time steps corresponding to 5 input days, and 1 successive
day as lead day for output.

• Train/Validation Split: 1 Jan 1975 to 31st Dec 2004 for model training and vali-
dation and testing (30 years). Out of which first 8000 samples were split 90/10 for
training and validation.

• Test Set: Leaving the first 8000 samples, the rest were used as the test set and used
in final model performance evaluation.

• Models: Direct forecasting using convolutional LSTM-based layers, followed by
Conv2D layer for 2D output.

• Architectures: As shown in figure 4.2
• Loss: Mean Squared Error
• Optimizer: Adam with 0.0001 learning rate.
• Activation: Hyperbolic Tangent Function 2.1.4
• Epochs: Fixed 500 epochs
• Evaluation Metrics: Pearson Correlation Coefficient
• Results: Section 5
• Note: It is assumed that the climatological shifts in rainfall are insignificant enough

to consider the data to be from the same distribution.

Foe the direct case, five separate models were trained to take the input defined in the
description above to predict the rainfall over the next 5 days, where each model was
trained on the same predictors but different targets depending on which day is to be
predicted. We will refer to the first predicted day as lead day 1 and so on and the model
used to predict lead day 1 as lead day 1 model.

This methodology was replaced in the iterative forecasting by using the lead day 1
model to predict lead day 2 results iteratively. This was done by concatenating the input
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Figure 4.2: ConvLSTM2D model architecture

of the lead day 1 model with the prediction of lead day 1 (and removing the first day
of the input to maintain a 5-day input size). This was fed to the lead day 1 model to
output the lead day 2 prediction. Therefore we now have a single model that needs to be
improved over hyper-parameter tuning and input data structure changes.

4.1.2 CubeSphereConvLSTM2D-based Model
• Data Variables: WeatherBench 500-hPa geopotential height (single variable).
• Data Frequency: Hourly
• Data Resolution: 5.625◦ spatial resolution (32× 64 global grid) converted to Cube

Sphere Grid with 16× 16 points in each face.
• Data Normalization: Standardization as before by subtracting climatological mean,

followed by division of mean climatological standard deviation.
• I/O Sequence: 2 input time steps and 2 output time steps for easy iteration.
• Train/Validation Split: 1979-2015 for training, 2016 for validation.
• Test Set: 2017 and 2018 for testing.
• Models: Iterative forecasting using Cube Sphere Convolutional LSTM-based layers,

followed by Cube Sphere Conv2D layer for 2D output.
• Architectures: As shown in figure
• Loss: Mean Squared Error
• Optimizer: Adam with 0.001 learning rate.
• Activation: Leaky ReLU 2.1.4
• Epochs: Minimum of 50 epochs conditioned on early stopping with parameters as

follows:
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Figure 4.3: 4 input frames, 1 lead time and 1 output frames with 0 spacing.

– Metric Monitored: Validation Loss
– MinDelta: 0
– Patience: 20 epochs

• Evaluation Metrics: RMSE
• Results: Beats the WeatherBench toy model but falls short of multi-input model of

Weyn et al. (2020).

4.2 Technical Helper Classes

4.2.1 Data Generator
As mentioned earlier, owing to the size of the WeatherBench dataset it was needed to
construct certain custom pipelines that can supply data on-the-fly to the model for opti-
mizing the usage of GPU RAM which would otherwise be used to load the entire dataset.
This custom class was built on top of keras.utils.Sequence class and is a customized
version of the . Given attributes of an data array file, input time steps, output frames,
spacing and lead time, the Data Generator outputs the restructured format of supervised
training samples.

This is different from the previous approaches used in George (2020) where a function
was used to create the supervised data from the original dataset. Given the original daily
frequency data was converted to pairs of (X, Y ) (where X consisted of time step of 5 days
and Y was the successive day), all of this was done on the RAM thus leading to input
data size equivalent to 6 copies of the original dataset that would be stored in the GPU
RAM. Using Data Generator provided for much more free RAM to train bigger network
sizes.

4.2.2 Iterative Forecasting
Previous work by George (2020) consisted of separate direct models trained to predict
lead time of 1 through 5 days ahead. All the models had the same underlying architecture
and only differed in the output lead time predicted.

The first part of this work consists of training an alternate iterative model and using
to it to forecast the next 5 lead days iteratively using the first predicted output and
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the last 4 ground truth days and so on. Once again, the iterative forecasting function
in WeatherBench feeds the output of the single input-output model into itself. But for
model which take 5, predict 1 or the similar kind required a separate iterator function.

4.2.3 Cube Sphere Remapping
The inspiration for using Cube Sphere Remapped format of data comes from the first
work of this type in Weyn et al. (2020). As the primary operation performed on the data
is convolution operation it demands careful consideration as to what format of data is
best suited for such operations. The regular latitude-longitude data is a 2D array suited
for convolution. But the convolution operation by default gives equal preference to each
grid point whereas the lat-lon grip is inherently distorted as 3D → 2D projections are
concerned. Therefore conversion of global lat-lon data into a volume conservative map-
ping into planar cube faces might improve feature extraction over lat-lon data.

4.3 Model Methods
We first now describe the general outline of the model training workflow.

1. The regular lat-lon data is bunched together using cdo utilities into training, vali-
dation and testing splits.

2. The regular lat-lon data is converted to cubed-sphere data using the CubeSphereRemap
class from the DLWP-CS.remap module.

3. The Cube Sphere Data is then assembled into a data pipeline via loading through
xarray and restructuring using DataGenerator.

4. A Functional API model is created with different architectures. Loss and optimizers
are initialized.

5. If iterative training is used, separate functions is implemented to feed-back outputs
to the model and concatenate the multiple outputs.

6. The model is trained on the fly using Data Generator with callbacks initialized for
stopping when a particular metric stops improving and saving the model state after
each epoch.

7. The trained model is them used to iteratively forecast and calculate evaluation
metrics like RMSE and PCC.

4.3.1 CubeSphereConvLSTM2D
In order to use existing ConvLSTM2D layer class for the cube sphere remapped data for-
mat, we needed to write a new layer class from scratch. As ConvLSTM itself is a complex
class, it has multiple inheritance. As it is primarily an RNN class, it consists of a cell
and a wrapper class which preforms the operations of the cell on multiple time steps of
the input provided. For example, consider the LSTM layer class, in TF v2.x, it called
keras.layers.LSTM. The generic RNN wrapper layer is called keras.layers.RNN. Both
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LSTM(n_units) and RNN(LSTMCell(n_units)) perform the equivalent function.

Therefore the first step to creating LSTM layers capable of convolutional cellular oper-
ations is to create a ConvLSTM2DCell. This is exactly what the default ConvLSTM2D
class is built on. The ConvLSTM2D layer class inherits from the ConvRNN class the
wrapping functionality and initializes within itself the ConvLSTM2DCell instance from
the attributes. Similarly, in order to make CubeSphereConvLSTM2D, we needed to
develop CubeSphereConvLSTM2DCell and CubeSphereConvRNN first.

4.3.2 Natural Padding for 5D Input
Apart from being suited for planar convolutions, cubed sphere format of data helps
to provide natural padding required tp preserve input-output dimension in convolution
operations as described in section 2.1.1. The only ambiguity remains for the corner points
which are filled with equatorial faces. While the regular lat-lon data can be naturally
padded in the longitudinal direction, the latitude has to be zero padded.

4.3.3 Iterative Training
Iterative training was first used in Weyn et al. (2020). Usually, as described in section
3.7.1, a certain fixed number of input-output steps are fed to the model. In iterative
training, during one training cycle, the outputs are fed back to the model in order to
predict twice the number of output steps so that the loss is calculated on multiple output
time steps rather than a single one. This way the model learns to predict future days
with not only the past ground truth but as well as past predictions.

4.4 Evaluation Metrics

4.4.1 Baselines
In order to make sense of our model performance, we need to have baselines to com-
pare with. Some of the typical baselines used in weather forecasting are climatology and
persistence. Climatology refers predicting the mean value over a given duration. For ex-
ample, weekly climatology assigns the weekly mean value to each day of the 52 calendar
week. Another baseline is persistence, which is based on "tomorrow’s weather is today’s
weather". For single time step output models, the persistence can be defined as the last
input time step. But for multi input and output, persistence can be defined in more than
one way. The most general is to assign one of the input time steps as the initialization
time step and consider it for persistence comparison. Here, the baselines are used to
compare the results on the WeatherBench data only.
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Chapter 5

Results

5.1 IMD Iterative Model

We have produced the following results using IMD data after developing iterative fore-
casting technique as opposed to the direct forecasting in George (2020). The evaluation
metric of this model is the Pearson correlation coefficient. The correlation is computed
for the time series predictions of the input and output samples at all locations. As the
predictions are themselves 2-D spatial images, the correlation coefficient is computed for
the corresponding time series for each spatial point across the samples and thus is rep-
resented as a correlation matrix of the same shape as the input grid shape. In order to
understand improvements of the correlation over various model testing, we compare the
respective correlation density distributions of the matrix produced.
Note that while comparing two time-series data, the correlation coefficient captures the

(a) Lead Day 2 (b) Lead Day 3

extent of the phase shift of the prediction. Therefore it is used as our primary evaluation
metric rather than root mean square error. Even if amplitude errors exist, they can be
scaled to match the ground truth through statistical corrections accounting for biases.
We compared the correlations generated by both methods. The differences in the distri-
bution of pattern correlation over the input grid space after changing the methodology
is shown in the figures below.
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(a) Lead Day 4 (b) Lead Day 5

Figure 5.3: Forecast skill with increasing lead day

5.2 CubeSphereConvLSTM Iterative Model
Here we present the results of Z500 prediction using CubeSphereConvLSTM Model as
compared against the baselines computed in WeatherBench, Rasp et al. (2020). The
following figure in the left show shows the global mean RMSE of network forecasts at
lead times of up to 120 hours (5 days) at each hourly computation. As expected, the skill
of the network forecasts decreases monotonically with lead time.

(a) RMSE of Z500 prediction from Cube-
SphereConvLSTM2D Model (b) RMSE of other baseline comparisons
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Chapter 6

Discussions

6.1 IMD Iterative

We see an improvement in the correlation density distribution after using a particular
model iteratively over separate direct models. The nature of improvement is visible from
the right shift in the distribution, which signifies an overall increase in the correlation be-
tween the prediction and ground truth time series spatially. Visibly, the mean increases.
The increase in peak corresponds to a reduction in the variance of correlation values
spatially and signifies more robust results. As usual the correlation decreases with lead
days as seen in 5.3. Note that the improvement in better for higher lead days signifying
a better understanding.

From the previous result, we can also infer certain advantages and limitations of dif-
ferent neural architectures. Usually, direct forecasting supersedes the skills of iterative
forecasting. This is clearly seen in Scher and Messori (2019) and Rasp and Thuerey (2021)
which are based on convolution-only architectures. We therefore see another advantage of
ConvLSTM-based model. This feature can be ascribed to the fact that ConvLSTM layers
have an additional representation of the temporal features and therefore are inherently
more well suited for spatio-temporal forecasting than Conv2D-based models.

6.2 Cube Sphere Specific

As a proof of concept we see that we are able to integrate all new tools and classes to
run training for this new model whose components are built from scratch. We see that
our model performs better than the CNN iterative model used in Rasp et al. (2020) but
is still behind operational skill level. In fact in comparison to Weyn et al. (2020) we
are close behind. The expectation here would be incorporate more correlated inputs like
in Weyn et al. (2020) and compare them on a more equal footing than single-variable
dynamics.
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6.3 Future research directions

6.3.1 Probabilistic Forecasts
As weather forecasts are uncertain is nature, it is usually accompanied by a probability
scoring of the predictions. In NWP, this is done by ensemble forecasting using different
initialization times or perturbations. NN-based forecasting is deterministic in nature.
The problem of finding a probabilistic scoring is a new research question in its own right
and can be explored further.

6.3.2 Hyper-parameter tuning
Given a proof-of-concept model has been made, another avenue of research can be a
rigorous hyper-parameter tuning of the model. The model can be tuned to perform
better by exploring the space of hyper-parameters like the number of hidden units and
layers in each unit, network weight initialization, choice of non-linear activations, learning
rate, number of epochs, time steps, and batch size and optimization techniques.

6.3.3 Addition of Input-space Variables
Owing to the constraints of GPU RAM optmization and computation time, we had to
trade-off train single variable predictions with bigger architecture. As mentioned earlier,
more variables need to be added from the WeatherBench datasets in order to expect that
the neural network will understand the dynamics of rainfall as required with the help of
relevant variables like solar insolation, humidity, wind speed vectors, etc.
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Chapter 7

Code Availability and Open Data

The custom layer classes and helper modules along with training scripts for the models
trained for this work can be found at github.com/aryax265/.
The IMD Dataset is available at www.imdpune.gov.in. The WeatherBench Dataset is
available as https://mediatum.ub.tum.de/1524895
The relevant source code for reproducing some of the models from previous works can be
found from the source code repository found in the original papers and are listed below:

• Dueben and Bauer (2018) - https://gmd.copernicus.org/articles/11/3999/2018/gmd-
11-3999-2018-supplement.zip

• Scher (2018) - Sebastian (2018), Zenodo Link

• Scher and Messori (2019) - Scher (2019), Zenodo Link

• Weyn et al. (2019) - github.com/jweyn/DLWP

• Weyn et al. (2020) - github.com/jweyn/DLWP-CS

• Rasp and Thuerey (2021) - github.com/raspstephan/WeatherBench

• Rasp et al. (2020) - github.com/pangeo-data/WeatherBench
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