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ABSTRACT

Monsoon prediction for a tropical countries become very important. Agrarian society

like India suffers a lot due to bad quality monsoon predictions. Lately, extreme rain-

fall events have been observed more frequently than ever before, causing large scale

destruction of lives and property. Monsoon is highly non-linear dynamical system.

Hence, Indian summer monsoon rainfall (ISMR) prediction at small regional scale is a

very challenging task. Conventionally, monsoon is predicted as a derived results from

physics based dynamical models. We propose a new deep learning based approach to

solve the problem at much smaller spatial scale (1° × 1°) than most existing statistical

systems. We have used convLSTM based architecture which captures spatio-temporal

pattern in ISMR. The algorithm is developed using single variable (i.e. rainfall) to

forecast upto five days lead time in future. It is seen that most part of India gives high

correlation for three day lead time.This work is very first attempt to capture such spatio-

temporal pattern in monsoon using statistical techniques.

KEYWORDS: Deep Learning, convLSTM
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CHAPTER 1

INTRODUCTION

Atmosphere and Earth systems, being one of the most complex system in nature, is

one of the hardest subject to be studied in the world for many centuries. Nature is

perhaps the most dynamic system to analyze. We have a long history of scientists and

physicists trying to study the physics related to these systems. We have made tremen-

dous achievements in the field and still there is a lot of scope for improvements. The

dynamical system modeling of nature has been developing steadily over the years and

constant stride is being made to improve the results. We see constant improvement in

parametrization of climatic variables for better result in the dynamic models. The cur-

rent state of the art dynamic models give accurate and precise results for variables like

air temperature, wind speed etc. These models have shown great capacity in predicting

hazardous conditions like cyclone and typhoons. Even after large scale development,

the problem of weather forecasting is still a great challenge. With extreme events be-

coming more frequent due to the advent of global warming and pollution, the earth and

it’s people are possibly under serious threat more than ever before. Frequent outpours

and heat waves are common observation now a days. So, precise and accurate weather

forecasting system is the need of hour.

Weather forecasting has been a very complex and long studied problem in the world.

Forecasting is a method of knowing the future before hand. Nature, being a highly non-

linear system, is hard to forecast. However, we have been successful in forecasting

several climatic variables with very good precision. Air Temperature and Wind Speed

have a good accuracy of forecast from the dynamic models. Precipitation is one of the

derived variable out of dynamical model. On the one hand when we are able to fore-

cast many climatic variables with great accuracy, derived variable such as precipitation

forecasting still exists as an open challenge to the community.

Among various regions of the globe, tropical region is perhaps the most dynamic

system. Tropical systems depend on various fluctuating climatic parameters such as



El-Nino and La-Nina. Forecast of any climatic variable in this region is a much harder

problem. In this work, we have tried to forecast monsoon over the Indian region. Pre-

cipitation forecast for the Indian region can have a very positive impact on our country

and it’s economy.

The Indian economy is mostly driven by agriculture. Indian summer monsoon rain-

fall (ISMR) is very important phenomena which directly impacts the Indian agricultural

production. Agriculture being an important sector in India, ISMR drives GDP of the

country, directly or indirectly. In a country like India where farmers still depend on

monsoon for agriculture, a failure in monsoon prediction can have hazardous effect on

the economy, such as loan deficit and unbalanced trade. According to Deshpande and

Prabhu (2005), over 48 per cent of the farmers are indebted and nearly two-thirds of

the farmers are frustrated with their profession. According to Mahapatra (2017), the

Government of India reported over 1200 farmer suicide per year since 2013. Changing

climatic conditions such as out pour of monsoon rainfall led to hazardous condition in

Western ghats of India, leading to loss of life and property worth millions. The recent

events of Kerala floods in 2018 is one such unfortunate event.Mishra et al. (2018) dis-

cuss the extreme rainfall event in Kerala, which was about 53% more than normal. The

event had long return periods in the range of 100 years.

Although dynamic modeling techniques have been used to predict variables, we are

seeing a gradual shift in paradigm for the last two-three decades. Several work has

been done using statistics based approach to solve prevalent problems. In 1.1, we will

see some of the works done till date. Most of the work solves problem of monsoon

forecasting in India but spatial pattern of the monsoon is not explained. These works

have forecasted averaged value over India or regions. We have shown from our work

that spatial pattern in ISMR can be used to forecast rainfall at much higher resolution

using single model. We have used convLSTM based deep learning approach for our

work. We intend to forecast daily rainfall for up to 5 days lead time. Our study is

uni-variate, rainfall being the single variable used.
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1.1 Literature Review

With such extreme weather conditions becoming more frequent recently, accurate pre-

diction of precipitation is a need of hour. Although the dynamic models such as the

recent third generation Coupled Global Climate Models (CGCM), such as Canadian

Center for Climate Modeling and Analysis (CCCma) have shown tremendous improve-

ments in prediction, their forecast for extreme rainfall events is not up to the mark.

Unlike dynamic models which explains the physics and dynamics of any process, sta-

tistical modeling is a data driven approach which recognizes the pattern in historical

data. There has been numerous studies based on statistical modeling of climatic sys-

tem which attempts to find relation between different climate variables and rainfall.

Regression based models were used by Thapliyal and Kulshrestha (1992), Gowariker

et al. (1991) to forecast ISMR. Recent advancement in computational infrastructure and

abundance availability of data has led to a revolution. Now a days, data driven statistical

models have proved to be good alternative approach to mathematical models for some

specific case study.

Tripathi et al. (2006) studied the use of machine learning algorithm for rainfall pre-

diction using down scaling property of support vector machine (SVM) algorithm. The

paper shows that SVM performs better than artificial neural networks (ANN) in down

scaling models.The author developed different models for each sub divisons. The sug-

gested model predicts average rainfall for various sub divisons in India as shown in

figure1.1 using grid point climate data at monthly time scale. The models are trained

using monthly reanalysis data maintained by National Center for Environmental Pre-

diction (NCEP).

Saha et al. (2016a) developed ANN based auto-encoder to generate non-linear fea-

ture vector and predicted ISMR using the generated features. Auto-encoders are unsu-

pervised machine learning algorithm. The paper discusses a non-linear dimensionality

reduction technique, sparse auto-encoder to reduce global climatic variables such as

sea surface temperature (SST), air temperature (AT) and sea level pressure (SLP). The

sparse auto-encoder can be seen in figure 1.2. Reduced feature space is used to pre-

dict ISMR using ensemble models viz., regression trees and bagged decision trees. The
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Figure 1.1: Meteorological sub divison of India - Study area of Tripathi et al. (2006)

complete methodology is given in the flowchart as shown in fig1.3. The auto-encoders

develop some complex features which have a better correlation with ISMR. Ensemble

based models trained on the generated features predicts rainfall better than state of the

art dynamic models. The developed model shows mean absolute error (MAE) of 4.5%

in predicting ISMR.

Figure 1.2: Architecture of auto-encoder. Saha et al. (2016a)

Saha et al. (2017) discussed stacked auto-encoder for non-linear dimensionality re-

duction to generate complex feature for regional ISMR prediction. The schematic rep-
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Figure 1.3: Methodology. Saha et al. (2016a)

resentation of stacked auto-encoder is shown in figure1.4. This is a development over

sparse auto-encoder and has several layer deep neural network. The developed encoders

were successful in better dimensional reduction with lower loss in variance. Again the

generated features were used to predict monsoon in different geographies, namely cen-

tral, north-east, north-west and south-peninsular India. Four different ensemble models

are developed for each regions. The models were trained using different set of gen-

erated features for each regions. The models predict monsoon with errors of 4.1%,

5.1%, 5.5% and 6.4% in central, north-east, north-west and south-peninsular regions

respectively. The stacked auto-encoder has two parts in it’s architecture viz., encoder

and decoder. The unsupervised learning for the auto-encoder is done by minimizing re-

construction loss. Reconstruction loss is calculated when inputs and outputs are same.

The encoder generates complex features reducing dimension of the input space and the

decoder reconstructs the output (same as input) from encoded feature space.

Early and late monsoon for Indian subcontinent is an important phenomena. Pre-

dicting early and late monsoon becomes non-trivial as the responsible climatic variables
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Figure 1.4: Stacked Autoencoder architecture

are very different for these events. Saha et al. (2016b) developed a model using stacked

auto-encoder to predict the predictors for both early and late monsoon events for India.

The early and late monsoon events are predicted by training ensemble models on the

generated predictors.

All the work discussed above predicts average rainfall over large geographies. Such

problems are time series problem without taking spatial pattern into account.

In recent years, deep learning started to make it’s mark. Due to advent of the more

complex algorithms such as CNN and RNN, scientists and academicians all over the

world have started using more complex networks for solving the problems. Shi et al.

(2015) used one such architecture for precipitation nowcasting. The paper discussed

Convolutional LSTM algorithm which was able to forecast using spatio-temporal data.

convLSTM incorporates the concept of two deep learning architecture, viz. CNN and

RNN. The model was used to predict rainfall intensity over a range of 0-6 hours us-

ing real time radar data over Hong Kong at time scale of 6-10 minutes. The model was

shown to perform better than state of the art Real-time Optical flow by Variational meth-

ods for Echoes of Radar (ROVER) algorithm. The model reports rainfall-MSE of 1.420.
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The purpose of our study is to develop a model which accurately predicts precipita-

tion for the whole Indian region. We have used convLSTM architecture for our work.

For training our model, we have used daily IMD gridded dataset. We have trained our

model on this data from 1964-2004. For testing our model, we have used the same data

from 2005-2012.

The thesis is organized as follows. Chapter 2 discusses basic overview of proposed

model. Chapter ?? briefs about the network architecture of the model. Chapter 4 de-

scribes the overall method adopted through the project. Chapter 5 includes the set of

experiments performed while training. Chapter 6 discusses the result obtained. Finally

we conclude in chapter 7 along with the future work.
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CHAPTER 2

Overview of convLSTM

In the era of deep learning and abundant availability of data, we have started to make

data driven decisions. Deep learning algorithms can capture non-linearity of complex

systems to derive some meaningful results. Out of many such problems, forecasting

a sequential data is of great importance. Many attempts have been made to solve such

problems using traditional machine learning and time series methods with great success.

Special class of network called Recurrent Neural Networks (RNN) became popular

for sequential problem solving. With time RNN module saw many developments from

vanilla RNN, Gated Recurrent Unit (GRU) to the more complex long short term mem-

ory (LSTM). LSTM was developed by Hochreiter and Schmidhuber (1997) in the year

1997. But only recently, we have had appropriate computational infrastructure to derive

full potential out of this algorithm. This class of algorithm are basically applied to make

decision out of a sequential data. Suddenly LSTM became a go-to algorithm for any

sequential data, such as natural language processing (NLP) and time series analysis.

Basically, LSTM is a module, which when stacked together forms a network.

Simple RNN modules fail to capture long term dependencies due to vanishing gra-

dient problem. LSTM are robust to vanishing gradient due to dedicated cell state Ct,

which has very minor linear interaction with the module aiding in unchanged informa-

tion flow Olah (2015). The module, as represented in figure 2.1a has three gates, input,

output and forget gates. These gates decide information flow out and in of these repeat-

ing modules in the network.

There are many versions to this architecture. One such architecture was developed

by Gers and Schmidhuber (2000). In this variant, peephole connections are added so

that the gates of the LSTM module can see the cell state. The important mathematical



Fully Connected LSTM v/s Convolutional LSTM

(a) FC-LSTM Olah (2015) (b) convLSTM

Figure 2.1: Long Short Term Memory

equations are shown by equations 2.1 where ◦ refers to Hadamard product.

it = σ(Wxixt +Whiht−1 +Wci ◦ ct−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcf ◦ ct−1 + bf )

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wco ◦ ct + bo)

ht = ot ◦ tanh(ct)

(2.1)

Simple LSTM are also known as fully connected Long Short term Memory (FC-LSTM).

One of the major drawbacks of the FC-LSTM is the handling of spatio-temporal data.

To overcome this problem, Shi et al. (2015) developed Convolutional Long Short Term

Memory (convLSTM) model which uses convolutional operations in the LSTM net-

work. The convLSTM is shown in figure 2.1b. The difference between FC-LSTM and

convLSTM can be easily seen in figure2.1. In convLSTM inputs, cell outputs, hid-

den states and gates it, ot, ft are 3D tensors.The convolution operation is performed on

these tensors. The important equations in convLSTM are shown in equation 2.2, where

∗ stands for convolution operation and ◦ stands for Hadamard product.
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it = σ(Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc)

ot = σ(Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ ct + bo)

Ht = ot ◦ tanh(Ct)

(2.2)

In the above equation, X1, ...,Xt denotes cell input at any time step. Similarly,

C1, ..., Ct denotes cell outputs and H1, ...,Ht denotes the hidden states. All the cell

value are 3D tensors.
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CHAPTER 3

Model Architecture

In the chapter 2, we discussed about convLSTM module. When such modules are

stacked together, a complex architecture is formed. One such architecture is shown in

figure 3.1. The figure shows the final architecture we have used for our study. We per-

formed pre-defined sets of experiment as will be discussed in chapter 5 to come up with

this architecture.

The overall architecture is a 6 layer deep convLSTM network, with each layer being

n + 5 cells wide, n being number of input days (or cells). Since we intend to forecast

daily rainfall for 5 days lead time, we have n+5 days wide network. n+5 convLSTM

modules are stacked vertically to form one layer. Such layers are horizontally stacked

to get a 6 layer deep network. Each layer contains 80 filters each. This architecture

works by encoding spatio-temporal pattern and then forecasting future patterns. The

information from past n days are encoded and this information is used to forecast the

coming 5 days. The discussion in chapter 5 includes detail procedures and experiments

for this architecture.

The table 3.1 shows shape and bulkiness of the model. It can be seen that the model

is trying to learn about 0.6 million parameters in the final architecture.



Figure 3.1: Model Architecture

Table 3.1: Model Summary

Layers Output Shape Number of Parameters
convLSTM (None, None, 357, 1, 80) 78080

Batch Normalization (None, None, 357, 1, 80) 320
convLSTM (None, None, 357, 1, 80) 153920

Batch Normalization (None, None, 357, 1, 80) 320
convLSTM (None, None, 357, 1, 80) 153920

Batch Normalization (None, None, 357, 1, 80) 320
convLSTM (None, None, 357, 1, 80) 153920

Batch Normalization (None, None, 357, 1, 80) 320
lambda (None, None, 357, 1, 80) 0
conv3D (None, None, 357, 1, 80) 57680
conv3D (None, None, 357, 1, 1) 9681

Total Parameters : 608,481
Trainable Parameters : 607,841
Non-trainable Parameters : 640
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CHAPTER 4

METHODOLOGY

In statistics, weather prediction including precipitation is basically a time series prob-

lem. Chapter 1 discussed the work attempted till now. Most statistical model developed

for ISMR are based on machine learning algorithm. These models are developed for

average rainfall over a geography Saha et al. (2016b) Saha et al. (2016a) Saha et al.

(2017). We propose a model to predict precipitation for entire Indian sub-continent. Our

model captures the spatio-temporal pattern in historical data to forecast future events.

Our study region as shown in figure 4.1 extends from 6.5° to 38.5° latitudes and 66.5°

to 100.5° longitudes.

Figure 4.1: Region under study

Unlike most of the time series problem, we are solving spatio-temporal problem

with one model. Our model uses convolutional LSTM network architecture (discussed



in chapter2) to predict precipitation. The convLSTM uses the concept of CNN and

RNN architecture of deep learning. Our problem can be defined as the equation 4.1.

X̃t+1, .., X̃t+k = arg max
Xt+1,..Xt+k

p (Xt+1, ..Xt+k | X̃t−J+1, X̃t−J+2, .., X̃t) (4.1)

The figure 4.2 shows flowchart of the study. The properties of raw data is briefly

explained in 4.1.1. Detail discussion of the data handling and preparation is explained

in 4.1.2. Finally, the preparation of model-ready data is explained in 4.1.3

Figure 4.2: Overall flowchart

4.1 Data Preparation

The study involves training a deep learning model to forecast ISMR. convLSTM used

for this study comes under supervised class of algorithm. We need to prepare our data

before feeding it to the network algorithm for training. The preparation involves cleans-

ing of data, sampling and conversion to supervised form. The following sections briefly

14



explains the steps undertaken.

4.1.1 Raw IMD Data

We have used gridded IMD rainfall data from 1964-2012 for this study.Rajeevan et al.

(2006) The data was taken on a daily basis. Since the data was actual observation,

many points in the study area had no observed value. The area corresponding to sea

and landmass outside India had no value. The used data was masked with the fill value

of −9.99× 10−8 at every point where the observation was lacking. The data was three

dimensional array, with dimensions corresponding to time, latitude and longitude re-

spectively. The format of data was netCDF4.

4.1.2 Data Pre-processing

Data pre-processing is done to ensure that the data is properly clean before sampling.

As discussed in section 4.1.1, the data is masked in the region where there is no obser-

vation. We observe that at multiple time steps there are values of absolute rainfall less

than zero, which is not possible. Analyzing further, we see that at all erroneous time

steps (272 time steps) there are two such values, making total 544 missing value. Also

we see that all value are −99.9 as can be seen in figure 4.3a. From the figure 4.3a it can

be seen that there are two values in Gujarat which are missing. The source of such error

can be failure of observation mechanism.

To treat such missing entries, we impute these points with mean of nearest four

neighbor. We have done spatial interpolation to impute the missing value. Figure 4.3b

shows the treated values. It can be seen that the missing entries have successfully been

imputed.

Now that the data is cleaned, we subtract temporal mean of every grid point to

convert absolute rainfall into anomalies. Figure 4.3c demonstrates the anomalies of

rainfall. We ensure that the data is properly scaled by applying max normalization to

the anomalous data. Final processed data can be seen in figure 4.3d.
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Data Preprocessing Steps (Values in rainfall [in mm])
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Figure 4.3: Data Pre-processing

4.1.3 Data Sampling

The processed data has to be converted to supervised learning problem before feeding

to the network. The network expects data in 5-dimensions (number of samples, number

of time steps, latitude, longitude, number of variables). Further we have to sample in

such a way that there is an input and a output data set for supervised learning. Fifth

dimension is 1 as we are using only one variable i.e. rainfall.

Sampling is done with repetition. We sample by sliding a window of size (n+5,latitude,

longitude). This window is then split into two sets. Number of sample being the win-
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Figure 4.4: Sampling Methodology

dow operation from which the data is generated.

• Input data set : (sample, n, latitude, longitude, 1)

• Output data set : (sample, 5, latitude, longitude, 1)

The number of samples generated can be calculated as

S = N − w + 1

where S is number of samples, N is total time frames and w is the window time frames.

One such detail calculation is demonstrated by figure 4.4Ẇe train two models using

different data sets.

• Seasonal Model : Model developed using monsoonal months (JJAS) 1 only

• Annual Model : Model developed using all months

For testing purpose we use same data set for comparison.
1Months of June, July, August and September
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As discussed in section 4.1.1, almost 70% of the data per time step is masked. Con-

volution over mask fill value will not give us expected result as it does not represent

reality. We approach training by extracting meaningful data from each time step and

converting it to one dimensional vector. Initially the data shape per time was Rlat×lon.

We convert this shape into

R33×35 =⇒ R357×1

The final data shape of our model is

Rsamples×timeframes×33×35×1 =⇒ Rsamples×timeframes×357×1×1

.

4.2 Convolution Operation

As discussed in chapter 3, we have used 2 dimensional convLSTM modules for devel-

opment of algorithm. This module uses 2 dimensional filters for convolution operation.

It is discussed above in section 4.1.3 that we have converted our data into single vector

of shape R357×1 at each time step. We cannot use normal two dimension filter in our

case. We have used a one dimensional filter over our reshaped data. Similarly, the fifth

and sixth layer are three dimensional convolution layer. It expects 3-D filter but we have

forced the second dimension to be of size 1.
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CHAPTER 5

Experiments and Training

The model architecture was discussed in chapter 3. Every deep learning model has to

be tuned for optimal performance. The process is called hyper-parameter optimization,

in which we perform different sets of experiments to get minimum loss. There are nu-

merous parameters that can be tuned. Number of layers, number of cell in each layers,

activation function, optimization algorithm, learning rate, momentum rate, number of

filters, number of epochs, batch size etc. are some of the many parameters that can be

tuned to get best performance of any model. We have used grid search cross valida-

tion technique to design experiment. We form grids of potential values of parameters

and search for the best set. Cross validation is performed to measure the performance.

We have used gridsearchCV function of scikit-learn package to perform experimenta-

tion.Pedregosa et al. (2011)

Our model has a lot of parameters that can be trained but we have conducted only

three experiments to boost our model performance.

• Number of Input Days: In this experiment, we search the best value for number
of input days for forecasting 5 days lead monsoon. The grid is one dimensional.
The metric used to measure performance is average coefficient of correlation and
root mean square error (RMSE). The metrics have to be single scalar, so we av-
erage both in spatial and temporal domain.

• Optimization Algorithm: In this experiment, we search the best class of opti-
mization algorithm for optimal performance. Optimization algorithms reduces
the loss function. We select 8 different gradient based algorithms and perform
one dimensional search to find the best algorithm.

• Learning Rate and Momentum Rate: Learning rate and Momentum rate are
hyper-parameters of the optimization algorithm, which decide how fast the model
learns and ensures the proper minimization of objective or loss function. We
perform 2-dimensional grid search to find out the best combination.



For training, we have used keras package in python with tensorflow running in the

backend. Abadi et al. (2015) Chollet et al. (2015) After searching for the optimal val-

ues of the parameters, we train the model using early stopping and model checkpoint

functions in keras. These functions help us to save best model.

We have developed three different models as discussed below.

5.1 Seasonal Model

As discussed in section 4.1.3, seasonal model is developed by using monsoonal month

data (JJAS). To train this model we perform the set of experiments as mentioned above

to seasonal data and further train on the optimal parameters with early stopping and

model checkpoint.

Table 5.1 shows the one dimensional grid for number of input days. It can be clearly

seen that 30 days performed best on both metric.

Table 5.1: Optimization of number of Input Days for Seasonal Model

Number of Days
Metric 5 10 15 20 25 30 35

Coefficient of Correlation 0.207 0.241 0.236 0.265 0.269 0.27 0.266
RMSE (mm) 17.4 17.2 17.4 17.1 17.1 17.1 17.1

Table 5.2 represents the search result for optimization algorithm. We see that Adam

algorithm outperforms other.

Table 5.2: Selecting best Optimizing Algorithm for Seasonal Model

Optimization Algorithm
Metric Adam SGD RMSprop Adagrad Adadelta Adamax Nadam

MSE (×10−4) 4.99 6.0 14.2 5.36 5.44 5.39 5.05

Adam algorithm has two parameters, viz. learning rate and momentum rate. Table

5.3 shows the 2-dimensional grid search for the best set. We select the set of those

values which give least error.
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Table 5.3: Optimization of learning rate and momentum rate for Seasonal Model using
Adam optimization algorithm

Learning Rate

M
om

en
tu

m
R

at
e 10−5 10−4 10−3 10−2 10−1

0.8 15.35 8.01 8.32 13.68 5.9× 104

0.85 12 7.4 8.05 130.8 2.7× 103

0.9 10.79 7.4 9.37 18.83 337.6
0.95 12.35 7.57 6.03 16.03 3.7× 103

0.98 13.10 6.13 7.66 15.49 124.13
0.99 10.91 5.80 6.80 3.1× 104 2.1× 104

5.2 Annual Model

Similar to seasonal model, as discussed in section 5.1, annual model is developed by

using all the months. Same set of experiments are performed to perform search for best

parameters. Since, this model is trained on annual data, we see different set of optimal

parameters.

Table 5.4 shows the grid for number of input days. We see that 30 days perform

best for RMSE but 25 days perform slightly better in terms of coefficient of correlation.

But we select 30 days, as we want to build a ensemble model using both seasonal and

annual model.

Table 5.4: Optimization of number of Input Days for Annual Model

Number of Days
Metric 5 10 15 20 25 30 35

Coefficient of Correlation 0.227 0.267 0.271 0.272 0.279 0.277 0.275
RMSE (mm) 17.2 17.1 17.1 17.1 17.4 17.0 17.0

We see from table 5.5 that Adamax performs best.

Table 5.5: Selecting best Optimizing Algorithm for Annual Model

Optimization Algorithm
Metric Adam SGD RMSprop Adagrad Adadelta Adamax Nadam

MSE (×10−4) 2.11 2.31 3.68 2.37 2.25 2.09 5.49

We tune corresponding learning rate and momentum rate for Adamax algorithm.

The search results for 2-dimensional grid can be seen in table 5.6.
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Table 5.6: Optimization of learning rate and momentum rate for Annual Model using
Adamax optimization algorithm

Learning Rate

M
om

en
tu

m
R

at
e 10−5 10−4 10−3 10−2

0.8 3.98 2.33 3.10 16.40
0.85 4.70 2.28 3.21 6.57
0.9 3.73 2.32 2.24 3.41

0.95 5.24 2.24 2.14 2.92
0.98 4.29 2.24 2.44 3.38
0.99 4.74 2.21 2.22 4.04

5.3 Ensemble Model

We develop ensemble of seasonal and annual model. Seasonal model captures the mon-

soonal pattern and annual model captures the long term pattern. The ensemble of these

two gives better result than any of the two individually, as will be discussed in chapter

6. Ensemble is simply the average of the two predictions.
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CHAPTER 6

Results

We finally predict rainfall for 5 days lead time for JJAS months for all the three models.

We have used data from 2005-2012 for testing, which generates a sample size of 704.

We have used coefficient of correlation at every grid point as our performance metric.

The coefficient of correlation is calculated between the predicted time series and ob-

served time series at every point. For such large sample size, we observe our results

to be statistically significant. To give a clear picture of the result, we have plotted root

mean square error (RMSE).

6.1 Results from Seasonal Model

The coefficient of correlation for all the five days is shown in figure 6.1. It can be seen

that we are able to predict rainfall with good correlation for the first three days. How-

ever, the correlation falls down as we progress towards 5 day lead time. The western

ghats, central India, north-east and Ladakh region gives good correlation compared to

other parts of India.

The RMSE plot in figure 6.2 shows the error between observed and predicted time

series. From the plots it can be seen that the prediction for all the days have almost

same error range.

6.2 Results from Annual model

The annual is also tested on the same data-set as in seasonal model. Compared to sea-

sonal model annual model has larger data to train. The results can be seen to improve

in some cases and deteriorate in other cases, as compared to seasonal model. We have

used same metric to evaluate, coefficient of correlation and RMSE. The correlation plot



for all the 5 days lead time is shown in figure 6.3. We observe that the maximum cor-

relation increases from 0.56 to 0.64 in 2 day lead time case, which is an improvement.

However the correlation drops for the 3 and 4 day lead time. The annual model per-

forms equally good for the first three days. The parts of India which performed well in

annual model can be seen as similar to seasonal model. The western ghats, north-east

India, central parts and Ladakh region prediction have good correlation.

RMSE for all five lead days can be observed from the plots in figure 6.4Ṫhere is no

significant change in the RMSE as can be seen by comparing the corresponding plot for

seasonal model.

6.3 Results from Ensemble Model

Ensemble results are calculated by averaging the predictions from seasonal and annual

model. We observe that the ensemble model outperforms both seasonal and annual

model. Testing the predictions from ensemble on the same 704 samples, we find that

the model improves the coefficient of correlation for 2, 3 and 5 day lead time as com-

pared to the seasonal model. But, the 4th day results deteriorate. The plots in figure

6.5 shows the improvements as compared to the corresponding plots in the seasonal

model. We observe that the ensemble model captures the northern India, central India,

north-east, western ghats and Ladakh regions with good correlation.

The RMSE plots can be observed from figure 6.6. The figures resembles similar to

that of the seasonal and annual models. There is no improvements in RMSE but the

trends in ISMR is better captured in ensemble model.

We have shown the year-wise analysis of the predictions in Appendix A.

24



Results from Seasonal Model - Coefficient of Correlation (CC)
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Figure 6.1: Coefficient of Correlation [Seasonal]
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Results from Seasonal Model - Root mean square error (RMSE [in mm])
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Figure 6.2: Root Mean Square Error [Seasonal]
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Results from Annual Model - Coefficient of Correlation (CC)
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Figure 6.3: Coefficient of Correlation [Annual]
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Results from Annual Model - Root mean square error (RMSE [in mm])
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Figure 6.4: Root Mean Square Error [Annual]

28



Results from Ensemble Model - Coefficient of Correlation (CC)
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Figure 6.5: Coefficient of Correlation [Ensemble]
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Results from Ensemble Model - Root mean square error (RMSE [in mm])
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Figure 6.6: Root Mean Square Error [Ensemble]
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CHAPTER 7

Conclusion and Future Work

In this thesis, a new statistical approach to capture spatio-temporal pattern is discussed.

The deep learning model based on conv-LSTM algorithm is shown to successfully pre-

dict future rainfall events using past spatio-temporal pattern. The model is computa-

tionally efficient, taking considerably less time than dynamic models to predict future

rainfall which can be very helpful. The model shows good results in most parts of India,

for up to 3 days lead. It is shown that the model performs better in western ghats, north-

ern India, north-east, parts of central India and Ladakh regions. The model is shown to

give good spatial pattern for these parts of India.

The work also discussed the modeling aspects of the prediction problem using deep

learning. It is shown that artificial intelligence and deep learning can be very helpful

in atmospheric and environmental sciences domain. This work presents a uni-variate

study using rainfall as the only variable.

The future direction of this work include multi-variate analysis using several other

climatic variables such as sea surface temperature (SST), sea level pressure (SLP), air

temperature (AT), humidity etc. Other data sets can be used to include climate on

oceans. Other models such as temporal convolutional neural networks (T-CNN), gener-

ative adversarial networks (GAN) can be used. The satellite data can be used along with

observation data to model. The dynamic simulation results can be also used to develop

deep learning model. The idea of deep learning can be extended to solve more problem

in atmospheric science.



APPENDIX A

Detail Interpretation of Results

In this chapter, we discuss the detail analysis of the performance. We have plotted the

results for each year separately to observe the model performance.

A.1 Yearly Coefficient of Correlation

Figure A.1 shows the point wise coefficient of correlation for 1 day lead time for 2005-

2012. We see that model performs equally good in all the years. We observe some

negative correlated points but the regions of western ghats, central India, north-east

India, Ladakh and northern India performs equally good. Regions such as Tamil Nadu

and parts of Punjab does not performs good.

Figure A.2

A.2 Yearly Root Mean Square Error



Yearwise Coefficient of Correlation (CC) - 1 day lead time
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Figure A.1: Yearwise Coefficient of Correlation for lead time 1 day
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Yearwise Coefficient of Correlation (CC) - 2 day lead time

2005

−0.15

0.00

0.15

0.30

0.45

0.60

0.75

(a) 2005

2006

−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

(b) 2006

2007

−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

(c) 2007

2008

−0.30

−0.15

0.00

0.15

0.30

0.45

0.60

0.75

(d) 2008

2009

−0.30

−0.15

0.00

0.15

0.30

0.45

0.60

0.75

(e) 2009

2010

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

(f) 2010

2011

−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

(g) 2011

2012

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

(h) 2012

Figure A.2: Yearwise Coefficient of Correlation for lead time 2 day
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Yearwise Coefficient of Correlation (CC) - 3 day lead time
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Figure A.3: Yearwise Coefficient of Correlation for lead time 3 day
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Yearwise Coefficient of Correlation (CC) - 4 day lead time
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Figure A.4: Yearwise Coefficient of Correlation for lead time 4 day
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Yearwise Coefficient of Correlation (CC) - 4 day lead time
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Figure A.5: Yearwise Coefficient of Correlation for lead time 5 day
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Yearwise Root Mean Square Error (RMSE [in mm]) - 1 day lead time
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Figure A.6: Yearwise RMSE for lead time 1 day
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Yearwise Root Mean Square Error (RMSE [in mm]) - 2 day lead time
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Figure A.7: Yearwise RMSE for lead time 2 day
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Yearwise Root Mean Square Error (RMSE [in mm]) - 3 day lead time
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Figure A.8: Yearwise RMSE for lead time 3 day
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Yearwise Root Mean Square Error (RMSE [in mm]) - 4 day lead time

2005

0

10

20

30

40

50

60

70

(a) 2005

2006

0

15

30

45

60

75

90

(b) 2006

2007

0

10

20

30

40

50

60

70

80

(c) 2007

2008

0

8

16

24

32

40

48

56

(d) 2008

2009

0

10

20

30

40

50

60

70

(e) 2009

2010

0

6

12

18

24

30

36

42

48

(f) 2010

2011

0

6

12

18

24

30

36

42

48

(g) 2011

2012

0

8

16

24

32

40

48

56

64

(h) 2012

Figure A.9: Yearwise RMSE for lead time 4 day
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Yearwise Root Mean Square Error (RMSE [in mm]) - 5 day lead time
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Figure A.10: Yearwise RMSE for lead time 5 day
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